skip to main content


Search for: All records

Creators/Authors contains: "Sikes, Elisabeth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. null (Ed.)
  4. Abstract. We present a global atlas of downcore foraminiferal oxygen and carbon isotope ratios available at https://doi.org/10.1594/PANGAEA.936747(Mulitza et al., 2021a). The database contains 2106 published and previously unpublished stable isotope downcore records with 361 949 stable isotopevalues of various planktic and benthic species of Foraminifera from 1265 sediment cores. Age constraints are provided by 6153 uncalibratedradiocarbon ages from 598 (47 %) of the cores. Each stable isotope and radiocarbon series is provided in a separate netCDF file containingfundamental metadata as attributes. The data set can be managed and explored with the free software tool PaleoDataView. The atlas will provideimportant data for paleoceanographic analyses and compilations, site surveys, or for teaching marine stratigraphy. The database can be updated withnew records as they are generated, providing a live ongoing resource into the future. 
    more » « less
  5. The atlas contains a collection of 2,106 published and previously unpublished downcore stable isotope records of various planktonic and benthic species of foraminifera from 1,265 globally distributed sediment cores. Uncalibrated radiocarbon dates are provided for 598 cores in the collection. Each stable isotope and radiocarbon series is stored in a separate netCDF file containing fundamental meta data as attributes. The data set can be further explored and analyzed with the free software tool PaleoDataView (Langner, M. and Mulitza, S.: Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019). WA_Foraminiferal_Isotopes_2022.zip contains 2006 stable isotope records (in netCDF format) and 598 radiocarbon records (in netCDF format). The folder structure in the file should be preserved and is required to use the collection with the software PaleoDataView. 
    more » « less
  6. Abstract

    Lower atmospheric CO2concentrations during the Last Glacial Maximum (LGM; 23.0–18.0 ka) have been attributed to the sequestration of respired carbon in the ocean interior, yet the mechanism responsible for the release of this CO2during the deglaciation remains uncertain. Here we present calculations of vertical differences in oxygen and carbon isotopes (∆δ18O and ∆δ13C, respectively) from a depth transect of southwest Pacific Ocean sediment cores to reconstruct changes in water mass structure and CO2storage. During the Last Glacial Maximum, ∆δ18O indicates a more homogenous deep Pacific below 1,100 m, whereas regional ∆δ13C elucidates greater sequestration of CO2in two distinct layers: enhanced CO2storage at intermediate depths between ~940 and 1,400 m, and significantly more CO2at 1,600 m and below. This highlights an isolated glacial intermediate water mass and places the main geochemical divide at least 500 m shallower than the Holocene. During the initial stages of the deglaciation in Heinrich Stadial 1 (17.5–14.5 ka), restructuring of the upper ~2,000 m of the southwest Pacific water column coincided with sea‐ice retreat and rapid CO2release from intermediate depths, while CO2release from the deep ocean was earlier and more gradual than waters above it. These changes suggest that sea‐ice retreat and shifts in Southern Ocean frontal locations contributed to rapid CO2ventilation from the Southern Ocean's intermediate depths and gradual ventilation from the deep ocean during the early deglaciation.

     
    more » « less
  7. Abstract

    Dual proxies were used to estimate paleo sea surface temperatures (SST) for the Bay of Plenty, north of New Zealand.and Mg/Ca in the planktonic foraminiferaGlobogerina bulloidesreconstruct SST for the growth seasons for the organisms they are based upon.SST (summer) were consistently ~ 3.5 °C warmer than Mg/Ca (spring), suggesting that Bay of Plenty SST during the last glacial maximum (LGM) was 17.3 °C in summer and 13.8 °C in spring. Combining these results with published data based on the same proxies from other sites around New Zealand shows cooling of 3–4 °C in both seasons at all sites in the LGM relative to the Holocene. This indicates that overall, glacial surface water cooling was similar in subtropical and subpolar waters in both spring and summer. This contrasts with published foraminiferal assemblage reconstructions suggesting greater subantarctic cooling during the LGM. Deglacial warming across the region was characterized by changes in both seasonal and latitudinal temperature differences. Warming began in subtropical waters at ~21 ka, ~ 1.5 ka earlier than in subantarctic water. In the Bay of Plenty, the seasons maintained a consistent offset, while in Hawke Bay, springs stayed cold while summers warmed until after the Antarctic Cold Reversal. In contrast, subantarctic spring SST warmed rapidly, causing temperature differences to decrease between the Chatham Rise (subantarctic) and subtropical sites, possibly caused by shifting westerly winds. The use of multiple proxies enhances our understanding by adding a seasonal component to the glacial story of climate change in the southwest Pacific Ocean.

     
    more » « less